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Abstrack. -
A theory of the relativistic beam plasma interaction is presented. and

compared with a one-dimensional computer simulation experiment. We assume

the beam interacts with an unstable wave spectrum so narrow that it may be

regarded as a single wave. From a gualitative analysis of this model, we

obtain the maximum electric field energy to be given by W‘E]Eﬁl%16ﬂnbmczf6 : 

1 -5/2 2 S 1/3 . ' n :

— - 3 = 2 ; .

> s_(1+s) where 8 _Bo Yo(nb/ ne) is a_strength parametgrr.nb and.ne
are -beam and plasma'electron densities respectively, Bé =‘v0/c, yo'z (1~502)'%

.and v0 is the mean beam velocity. The numerical experiments show that W =

0.158 8 for S £-0.63 reaches a maximum W ~ 0.1 at 8 ~ 0.6,_andrdecreases

: monotonically_forzs > 0.6. The theoretical expression agreés:With'thés& o

results except for S << 1 where indeed the single wave model may be‘breakingj'

~down because the spectrum is not being totally dominated by one wave. The 1'

decrease in energy transfer for 5 > 0.6 is the result of beam electrons.

 being distributed over a large energy range during the trapping process;:

thus reducing their ability to act coherently. Within a few e-folding times

before wave saturation, harmonics are generated due to spatial bunching"
and their energy spectrum is found to obey a power law dependencej The wave

spectrum built up as a result of the twowstream-instability.décays via the

o
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oscillating two-stieam instability: " During this process the ions provide.

an efficient coupling for energy transfer from-laxge amplitude, high phase

velocity waves to low phase velocity plasma waves which are Landau dampéd'

by the plasma. This anomalous heating results in essentially all the_:_

enerqy lost by thé beam going into electron heating.
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I. INTRODUCTION

- In recent yvears high current relativistic electron beams.have been

developed to the state where they can have important applicatioﬁs in'the_.

-problem'bf controlled thermonuclear fusion. - One direct applicationfof]f'

_these beams is in the formation of relativisitid coils_so_that a minimum -

|B] configuration with closed lines of force can:be.achieved without
internal conductors” . . Due to the.véry'hiqh,p0weﬁ and sﬁbstantial‘*- :

10

energy content of these beams, 10 ~10" 'watts and 20~100 kilojoule per -

- pulse, their application to heating a Qlésma to thermonucléar:temperatures_

becomes very attfactive. In bfdér to assess the:importance of-thése;high.“'
cufrent beams for piasﬁa heating, it becomes hecesséry td make.a quantitaﬁive
evaluétion of’tﬁé intera;tion of such beams'wifﬁ a plasma._~

.it has been shown,_both theoretically and ex@erimenfally;zthat'beams
with v/y>1_will propégaté inxthe presence of a dense plééma.' Here we.

adoplt conventional notation: - v=1Nr , N is the number of beam electrons

' . ' . . . - : 2 0
per unit length, r, is the classical electron radius, and ymc is the beam

energy. TIn this connection v/y may be interpreted as being equivaleni to -

I/IArwhere'IA = rLOOOBY amps is the Alfvén . critical current and T isrthe

actual beam current. The plasma serves to neutralize the beam electrostati-
cally; in addition, it allows a return current to flow within the cross—.

section of the beam which neutralizes the beam's magnetic field. The

oo S - i . B 2,2 - R
condition for this current neutralization is a /AE>?1» This condition is

~true even in a magnetized plasma . Here a.is the radius .

of the beam, AE = c/ug is the skin depth, t and,wi;are the electron and
ion plasma freguenciles.

The return current is subject to decay due to turbulent dissipative-




processes in the plaswa. For instance, the current.driven ion scund instability -
will result in a decrease in the plasma conductivity. = However, any .
reduction in the return current must be accompanied by an increase in the

net magnetic field, which in turn gives rise to an inductive axial electric

field. The electric field attempts to maintain the return current and

thus decelerates the beam. In this manner the beam_energy is convertéd"
into plasma-thermalzenergy.' This heating mechanism wés-proposed.by

Lovelace and Suaan8

. The :beam can also transfer its energy to the plasma
via the two~stream instability. The pfesent work is devoted to a detailed
discussion, supported by computer simulation studies, of this mechanism for

a homogenecus beam~-plasma system.

-For purposes of our pregent study we assume that the beam propégates in;_

the plasma without any signs of gross magnetchydrodynamic instability;. In

other words, we_assume the growth times of such éerturbations to be muéh_
lohger than thdse.associated-with tﬁe two—sfream ihstability,-~$his-appears'
to be a feaéonéble'assuﬁpfion in iight of groﬁth'tiﬁés.iqund by Ivanov and "
Rudakov’ .fdr the hose and pinéﬁ.insﬁability.

In Section II we discuss the linear theory of - the two-stream instabilitj.

" We present two .cases in which it is possible to represent the unstable wave

spectrum by a one—dimensidnal model. ' In the first case we congider beam
propagation along a strong, magnetic guide field.'-For beans with Avl{c<<l
~1, . .1/3 . ' o ' o
and Avll/c <<y0 ‘nb/zne) rwe find the one-dimensional model to be valid pro-
y w > ’ w -z . v v Y “he ©8PY
vided Qe/ o ~_10_an§ Qe/ o 2 Y S. Here A l-and A l[.are_the velocity sg gads
perpendicular and parallel to the direction of beam propogation, (Yo~l)mc

is the kinetic energy of the beam, n, and ny azé the plasma and beam densities,




.and'Qe E-eBO/mc_is thE‘electrbn:cyclotrOn frequency. ~ In addition, we havéL

defined S = Bozfo(ng/znejl/s as é stréngtﬁ_paramefer:for.ﬁhe.interaction.

| Tﬁe.second_cése ié'chéracterizéd_by a.sptead in @erpéndiéulér velécities
sufficiént to stabilize.the'féstei‘growing waﬁeé which”héve a;finite Eoﬁpénent
of ?erpendicu;ar wave number'kl;. ;f-initially'the;séread'in.éérpéndicuiarr'
velocities is not sufficient to Stabiiize_the fxansverse iﬁstabilitiéé; i.é;J

/3

' n 1 . ‘ ) S - o
Avl{c<< (nb/zyone) o then Fainberqg, Shap;ro,_and sheychenkolo-have shqwn,

“through a quasilinear analysis, that there is a rapid increase in-perpen~=

dicular pressure due to the geheration.of wavés_with finite kl:' During’this

fbuildup the beam transfers on the order of O.25(ﬁb/21bné)l/3 of its initial -

enérgy-to these plaSma modes;- Howevef,:due to.the.largé longitﬁdinal_ﬁass;;_
ml| = yo3m,.no significant”velocity1spreading.takesfplace in_that diréctiép_.
durihg #his time, even théugh.a'Significéﬂt moméntum épréad, Aplikpo -
0;59(nb/zyone)l/3.wh¢re = ig the mean beam'momentum, is-pfdduced. fhé
subsequent ﬁeam rélaxatioﬁ then p;oceeds iﬂ_the_longitu&inal di?ection.
anaiogous to a One;dimensiénal.moael.

In olr treatment we will assume that either é gﬁi@e field of suffiéiént -
strength is present or the_beam has a sufficient-perpéhdiéulér_velociﬁy

spread to quench the fast transverse instability, initially or as a result

of the dynamical action of the transverse wave spectrum. We will thus confine

our study to the time evolution of a one~dimensional spectrum. °
In Section III the nonlinear theory is discussed. - The ‘primary quéestion
L . e e 12, 2. _
is what fraction of initial beam energy W = % ]Ek{ /Sﬁnbyomc is converted
o _ ok <t ! ‘ :

into the electric field. energy of the'plasma waves during the two-stream

instability. For a low energy, high density beam interacting with a warm




10 -

" plasma a quasilinear analysis of a one-dimensional ‘spectrui by Fainberg et al -
yields
W o= 0.158 8 for sl o oy
o e i |
Wwo~ 1 - for sxl. . .y

Here S has been defined preViOusly'as thg strength'parameter of the interaction. :
When a high energy, low density beam interacts with_a.cdld plasma tﬁe single

11,12
wave model .’

of the interaction is applicable. The single Wave_model:assumes
the unstable spectrum is dominated by the wave with the largest_liﬁear grbwth o
rate. -Under these conditions the wave amplitude is limited by patticle_trapping,
S ; 13 : - - . |

Kovtun and Rukhadze - treated the single wave model of the interaction and

solved Poisson's equation in the frame of the large amplitude wave.7_The analysis

used Fluid eguations and was restricted to the 5<<1 regime. Their results

14
‘were

W = 0.198 § for s<<l. e S (3)
HoWefer, we point out a possible inconsistegcy-in the methéd usea to.obtain B
the abqve result,
. From a qualitative'analysis 6f ﬁhé probiem we propose_the.geﬁeral
reiationship |
5/2

W o= 0.5 s(l+s) for all s. . qay

_This result is surprising in the sense that a maximum is predicted when

S % 0.66.{For example, a 1.5 Mev beam with a bean td;plasma density ratio
of 10_2 has & strength parameter of S = 0.62.) The decrease. in energy 

transfer for § > 0.661is due to an increase in the spread of frequencies

with which trapped beam electrons oscillate in the potential well of the.




to be

- wave and, consequently, a decrease in coherent energy tranSfe: to the wave.

o o 10 DR
Note that the result is in marked coentrast to the Fainberg et al™ results:

for s z 1.

In Section IV the results of a one-dimensional, electrostatic numerical
experiment are presented. A susmary of the eleven cases performed is givern ..
in Table 1. The typical evolution of the interaction is found to accur in’

basiéally three stages. in the first stage there is exponential growth of

~waves in égreement with the linear theory of the two-stream instability.

This exponential growth ceases abruptly when the beam electrons trappéd near -

the bottom of the'potential well. of the-large.amplitude wave complete one-

half revolution in phase space. - The maximum of W occurs at Sz 0.6. For
S < 0.6 the dependence is‘linear, W = 0.158 8 in agreement with the qudsiliﬁéar
S s - 10 o - o o ) : -
results of Fainberg et al . For S z 0.6, W decreases in good dgreement with (4).
There are'situaticns_in which the large Amplitudé wave can significantly
accelerate some fraction of the background electrons. The additional damping
introduced by the acceleration of the plasms electrons causes a reduction in

. . : ' : 2.2 ' . 2 :
the limitirg amplitude of the wave when W, /me z 0.038 where o = 4ﬁe2ne/Yw$m

e

ig the effective beam plasna rrequency,yw = {1 ~ (w/koc) Yy 7, and w/ko'ls the

phase velocity of the large amplitude wave.. Also, within a few.effolding

times of wave saturation, harmonic generation is present due to spatial bunching.

The power law dependence for the energy spectrum of the harmonicsfis found
' 2 2 -a L _ 3 : o
E __. | = |E \ n  where k “is the wave number of the fundamental
,k=nﬂo ko : o ' . _ o
and n is the harwmonic number. The exponént o is typically 4.75 £ 0.50

indicating a much faster decay than in the nonrelativistic case. During this

stage adiabatic heating of the electron and idns takes place.




" The second Stage begins shortly afterZSaturation'wifh the wave-ehergy--f

oscillating about a mean value with frequency wT'=_(ekoEk /Yim)i- At this @ -

point the large aﬁélitudé.waﬁg can be regarded as'being equivalent to an. .
external driver wave capable Qf_éxéiting'parametric_instabilities in the-
plasma. Indeed, after a féw amplitude oscillations:tﬁe ﬁéve decays via'the 
oscillating two;stream instability to a much 1oﬁer le&ei; This instability

produces low phase velocity waves travéling”parallel and antiparallel to the.

direction of beam propagation. The electron waves are then Landau damped by

plasma producing heavily populated, energetic. tails on the eleéctron distribution

and to a much lesser extent on the ion distribution. 'During this process

‘essentially all the energy lost by the beam goes into electron heating. - The

final stage corresponds to resonant heating.




IT. LINEAR THEORY

- In order to c¢laim some degree of validity for a Qne“dimensional'model‘V_.”

- of the two-stream instability spectrum,we consider regimes in which the

maximum.greﬁth'rate of the two-stream insﬁébilityﬁ.8§6yo-l(nb/2ne}l/%w
is_at'least'twice as large as the growth ra?e of ahy mode involving a finité EL..
a) Beaﬁ Propagation Along a Strong_Magnétic Guide:ﬁieié, |

We restrict the analysis to regidhs_éufficieﬁﬁly far'behind ﬁhe L
beam ffoﬁt to:insure;both eleétrostaﬁic an&:magﬁétié;neutréiizatioﬁ; Tﬁere¥
fqre, we can neglect.the self magneti& fielé in cémparisdn_with thE'gﬁide
fiéld. Since at this point we are only interested in.offering én.argﬁmént”
for making the onendiﬁensional m@del piausible;we assuﬁé:that.the-ﬁaves are
predéminantly:electrostatic. The linear disperéioﬁ feiationship féf thesei
waves éaﬂ be expréssed'as .

E(g,m =1 + ;'uj_qg,m =0

where uj(kjw ) is the sisceptibility of'épgciés j,.j.= i, e;.and b.fpr'ions;
electrons.and beam électrons.

Reétriétipg the analysis to the high frequepcyVregime, w.$z(wéQe)%,
the. ion coatribution can be ngglectéd.. Choqsing a mgxﬁeilian distribﬁtion.
for the electrons;-with a gharactéristéc ?hepmal velogity v, = (Te/m)%,.the  -.

electron suscéptibility can be written in the form
: 2 : 2, : o
uoo= - 2 cos B - —2E2 sin 0 : (5) -

: _ L2 2 - - )

for kl?e/ﬂe.s 0.20. Here cos 0 ='kl|/k and k¥ = kl_ + kllz.- The relativistic .
nature of the beam electrons can be accounted for by -the two mass. approximation,
mll = YBm and ml‘= ym. The beam distribution function can then be approximated

by fb :‘(2ﬂOi}~l. 6(u0~g||)'exp (—ul?/zeléijhére_g_f YE,‘OlE= yz(évi}2 Py =




(l'+'uO?/c2)“,_and Avi‘is the spread in perpendicular velocities. ' Under these

assumptions, the beam susceptibility becomes

R

.. 2
mi- gin @ Wy cos 26
T LT e @
L2 2 2
.(w—kllv ¥ "QR. (w—k]IV.)
) 2 2 2 2, 3 P U
where W, . = /yo ; wbl| = wb /YO y 8= Qe/Yo is the relativistic

PL b
cvclotron frequency, and kX Av;/Q_ < 0.20.
o g2 o
If we take nb/yone<<l, which is the typical situation, then the normal
(mf Co modes of the system are mainly determined by .
1L+yp =0. - S IR o
He _ Ce . .(7)
2 . c :
For weg/ﬂe <<l there are two natural freguencies corresponding to (7): .

w o= cos0
=]

and ) ’ )
o = a 1+ 2 sin 20720 .
: e ) e

We expect ingtability to occour whenever
w” kv cos 8- nQ, with =~ n =0, %1 .
2 .

. o o ' £ . ' : -
The maximum growith rates 6n {a= * for w = w") corresponding to the above.

resohances are (see Appendix A for detaile):

+, _f

/e = R (n/2m )2 w2 )M sin #30 cos ¥/%
L B ‘/_3‘ 1/3 .
_6O/me = 3 (nb/2pe) | cos O }

]




ohl/me_? E’(ﬁb/he)_ | (wE /Qe ) 51§. 0
- 1o, 1/2 a2 1
G_l/m —.2 (nb/ﬁé) (we/ﬂe) sin © cos: .O

' + o N .
The resonance . = kvo cos O + QR is found to be stable.: Thus, the

gpectrum will be'approximately one dimensional.if '-Qéz/we? zfio-ahd Qe/we.z.yos;ﬂ

: Undex'these restrictions the 6ispersion'relatiohship_reduces.to

_ 2 ' 2
» | o . wb||. co$ C]

: 2 :
l--=- ¢cos @ - — =0

2
(UJ"]{I ]'\F’ Yo
" with the maximum growth rate occurring for waves with_kl!=_0;
B} A Beam in Which -the Transverse Instabilities=Have Reen Stabilized by

a Spread in Perpendicular Velocities.

It is possible to stabilize modes with finite kl-provided.the beam
has a sufficiently large spread in its transverse velocities ﬁvlf lowever,
it . P _ /3 T
if initially Avl is small, i.e. A*l{c << (nb/yone) r then the maximum growth

10 /3m -.which occufs for-Waves with-kllz/kl? =

rate ig 8 = 0.866.(nb/2yone)}

1.06_(2dee/nb)l/3_'Avi/c << 1. As the insgtability progresses, Avl_inéreésés

until Avl/c ~ (nb/yone)l/3. During this time the fraction of beam energy

'converted‘into electric field energy associated with the transverse waves is

approximately O.25-{nb/2yone) / . . The important peint,. however, is that the-
velocity spread in the parallel direction AV!l is not'significantly increased

during this process due to the iarge effective mass in that direction.

" Thus af ter the saturation of the transverse modes, the rémaining beam




~10-

jinstabi’iity follows thé-simple_one"dimensiohal-dispersion'relation'-

: 2
3 ,wb _—
w2

1~ - s =0 ey

_w2 - Aw—kv }2
_ o

This, of course, assﬁmesfthat the growth rate in the léngitudinal direction
exceeds any growth rates associated with perpendicular modes of a warm beam. .
At this point, we will assume expression-(8} adequate1§ describés the ..

linear evolution of .the interaction and recall that-the'gfowth:rate9and

" freguency of the most uhstable_wavé is giveﬁ'by

/3
W
e

e
il

-1 1
0.866Y0‘ (nb/Zne)

e 173,
§ = me(l._ 0-57O (nb/2nej. )

. : ~ 3 . . . . . . - : . )
-ﬁqrrnb/yo n, << 1. To facilitate comparison between theory and computer .-

experiments eguation (8) was solved numerically for a wide range of

. 15 . L. g - S
parameters’ ~. Typical plots of W and Gk ag a function of wave number are.

given in Fig. 1.




S elle -

ITT. . NONLINEAR THEORY

_ Ai_ Eﬁeréy.Transfer During Two;st:eam Instaﬂﬁlitjj?hasé;:

| ?(e pc:nijier an.ihfinitely 1ong_oné~diménsipﬁél'beamépiésma,éysieﬁ;'_
In ﬁfactice, this reqﬁi;es the interaction distancé,L'fo.be mu?h'g:éatér thén
.the wavelength of ﬁhé-fastest growihg wave. In addifib#, we require:L >> Lﬂ__
where Ln is the distance ovef which the tWOfstréamfinstability can deﬁéiéb._ 
to its ﬁOnligear limit. We'caﬁ estimaté.Ln By:nétinq-that a strong hydré¥ -
dynanic instability[ such aéfthe_twojstream'instébiiity} ﬁa? eﬁfoid up to

ten times. Here the number of e-folding times is defined as N = 0.866 Ygl(nb/zne)1/3»
w E, = Ia ( ¢M/¢T } where ¢M is the émplitude of the potential at the time of _
saturation, ¢T is the amplitude of the thermal roise, and tS is the total tims

the instability grows at an exponential rate. 5Theréfbre} chosing N = 10 we

- 1/3 _ - .
: £ Toz - Vi
est;mate T, .ll.SSAE Yo (2ne/nb} . ___or.example,_lr g. 0.5 hev .

n

beam with a density of lOll/cm3 interacts with a plasma of density'1013/dm3'
then L. = 23cm.
I

.Initially_we assume - the bheam thermal velocity'ﬂvll to be sma1116 such

/3 12

' - 1 . : . .
that Avll/c.<< yol(nb/zne) . EBxtending an argument given by 0'Neil et al

to the relativistic regime, the half width of the waw:e' épectrﬁﬁ after
N_e-folding‘timeé is aﬁprdximately Sk/ké x1.76 Yonl (nb/2né?l/2 ﬁ—l/? where k0“.
is.the'wave number corrésponding to the most.unstable'wave. Thus for.a 1OW 
energy, high density beém interacting with g_wﬁrm plasma, fhé spéctrﬁm may bhe
composed of enough waves of varying phaseé 50 that a quasilinear ahalysis_to--”
determiﬁe the saturation lewvel of the waveé i§ pqssible; On tne othér hand,.
for a high énergy, low denéity beam interacting with a aold.plasma,.the_wave:
-Spéctrum.can be very narrow. - In this iimit, ﬁhe spectrum.may be'approximatea

: o 11,12,17,18 - . A
by a single wave with wave number k . ! ! In this report we are pre-




elliptic integrals of the firstanasmcond Knd, and £ = 2e (%myOB(m/k uv}2+e¢ )

_12_'

_domihantly.conCérned'with_the single wave model of the interaction.

In the analysis of Kovtun and Rukhadze ., the background plasma is-

treated in the linear approximation} and the determination of the limiting-L

amplitude of wave reduces to the solution of a harmonic oscillator being

driven by a small nonlinear term associated with the beam. Using the

- asymptotic methods of Krylov-Bogolyubov and'limiting.their'analysis'to'thg.

5 << 1 regime, they obtained the felatidnships-

2 2

: By Oy : - R o o
1 - = - N(E) =0 for E< 1. . )
w R '
- v, i ? 4 269 x Y
and 7
| w2 20, °m R : : .
e b - E(L/E) - _ o1 S
S [1_- 2 K1) ]__0 for gt b (10)

W e k

In the above expressibns,,¢ is the amplitude of the potential in the
R I . - . .
laboratory £frame, N(§) = 8§ (2-&7 - 2E(£)/K(E))( x and E are thé complete
. . o
is a trapping parameter. Expreséions 12} and (10} are nohlinear.dispersion”
relétionships which take intb'account the finite amplitude of the wave. The

maxi mim amplitude of the potential is taken to occur at £ = 1: when pérticlé

trapping is complete. At this point, there are three relationships between

¢ +» w , and v ; namely,

1 - - — =0, (9
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and

y | 1y

. s
%mYOB (w/ko"V) = ap
.where'¢M is now_thé maximﬁm ampliﬁude'of.ﬁhe_potén#ial.. Using.coﬁdition B
(11}, one can find_three roots corresponding té the frequency from Equati@n
{99, However; at tﬁe time of.saturatién none qf the rooté.ﬁaké'anf thsicai
C sense. 'Tﬁus (9‘) Qas:igno;ed coﬁpietely,'énd (io‘j_aﬁd {li}_ﬁeré cémbined to

" obtain

_ wez 4wb2 e 7 o o :
1= + =0 . a2y
: 2 3 2 : I ;
w g (wﬂkOV) : :
o ‘*-\ . ’ . .
Qm) : from which
: 273 -1 1/3. o o - S
w=w (1-27"7y “{n./2n )" ") | ‘ o _:{13);.._

and § = 0. Here it was assumed that the conditibn.kov :.we remains valid
throughout the interaction. Substituting the frequency (13) inte the expression
for the potential (1G') and noting that -ﬁIEK’ /81 = ko ¢M2/l6ﬁ one finally =

.14
obtains
W= IE |2/i6Wn.Y me? =.0.198 S | for § << 1. o (1)
_ M oo . . R :

We haﬁe used the method outlined above to calculate the fracfion of -

energy lost by a nonrelativistic beam during the two-stream inStability. We
must assume that the beam velocity spread as a result of-the_instability

remains small compared to the initial beam velocity since we need the condition
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o C . e T MR SN SRR 4 S
kv zk x = H 1lid, ~ We find that : Y = 0.3 ;0
n oV, * W, to remain vali We fin a .IEMIf/Bﬁnbva 'C.316 Fnb/ne) .

however, the nonrvelativistic results of references (11), (12), (17);'aﬁdr(18}

indicate that the constantﬂof_pfoportioﬁality is 0.96 to 1.125. 2lso, we note

* that at the time of saturation, the freguency shift o - W = Aw of the large

IR

amplitude wave predicted by the above method, Aw = —3Ql6AmT, is much larger

12
r /3‘”

than that found by O'Neil et al Tw

. | o R 8
= - 2 a . = R ;
Aw . 1.HAwL Here AmL 0.5 (nb/zne)

- is. the magnitude of the frequency'shift'predicted by 1inear theory. Conséquéntly,

we are skeptical of expression- (14) since it does not agree in the nonrelativistic
limit with other calculations.
We now present a gualitative snalysis which embraces the entire range of

the parameﬁer S. To start we note that

. 5 L oL 3 S SR
v, = (1-B.7) fxoy (1) C S - sy

/3y

. _ . . : _ . . 1
where we have used the linear result for the'frequency,_m=we(l—0.5Y {nb/2né)
. : . o

' e o L2/3 SR
and-Bw = mBO/kOVO. Alsc a term of order (nb/zne) has been neglected compared
to unity. Therefore, the energy difference between a particle moving with
velcotiy v and one that moves with the wave phase velocity increases as S -
increases. Qur analysis, in some respects; is similar to that presented by

o1l ' . .
Dxummond et al” for the nonrelativistic case.

The evolution of the wave growth and saturation is depicted in the

‘iaboratory frame phase space plots of Figs. 2a, 2b, and 2c. At =t

(see Tig. 2a) the beam electrons move over a single wave with relative

Velbcity
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&vw/g 2.0'5Yo _BoKnb/2ne)_/f_;(l - ve/kc_}L___ :: __" o (1§)

At t = tl {see Fig. 2b) trapping of the beam elécttons'bégins when the
sepa:atrix associated with the poteﬁtial ¢(ti) passes th:oﬁgh_the,actuél
beam trajectory. At this time, the beam trajectory is still eéséntially‘a.

straight line (bp/p_ = 0.1) since the field has not had sufficient time to

" modify the beam electron momentum. In Fig: 3 the separatrix is plotted in’

the wave frame for various: values of Avw/c. Note. that as Avw/c-increases,

" or equivalently S, the separatrix tends to becomne Sharpér. Due to the in-

creasing sharpness of the separatrix, the initial number of beam electrons
trapped at £ ﬁ-tl decreases as S increases. After being trapped,

the electrons begin to rotate in phase space giving up their laboratory

 frame kinetic energy to the wave. 7In the meantime, the wave is continually

trapping more electrons as its amplitu&eiincreases. At t = t2 {see Tig. 2c)

the electrons trapped at t = t, have completéd one~half revolution in phase

i

-space. At this time the wave has grown to such a large. amplitude that it

~has trapped most of the remaining electrons. As in the-nonrélativistic case,

the wave growth ceases at this point. "Due To relativisite effects, however,

elegtrons trapped after t = tl will be rotating in phase space more slowly

than in the nonrelativistic case. For example, a nonrelativistic particle

trapped_half way up the potential well has a trapping freguency ih the
laboratory frame of Wy = 0.85 (ek02¢M/h} while a feléfivistic éafticle._
similérly trappea, with YM = 2 say, ‘has a trappigg'frequéncf of-wT_¥ 0.68
(ek02¢M/Yw3m). The trapping frequencies are discussed in-Appenaix E._ Here

(YM—l)mg is the maximum particle kinetic energy in the wave frame. As a
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‘result of a greater spread in trapping freguencies, fewer electrons lose

their energy coherently to the wave ~. Thus, in the relativistic case, . the

number density ﬁnb of electrons losing theix enéxgy;dohe:ently to the wave .

' iS'approXimatelY'the number density of eléctransltrapped near- the bottom of |

the well.f-

In order to estimate an we agsume the momentum distribution in the

laboraﬁqry'fraﬁe_is smearéd éymmefrically about.?fovér'a range of éAu fsee Fig.
ha) whgre uis belgw i% by.thé-amount éf ﬁqﬁéﬁtnm impartedito.tﬁelﬁavés;‘ 
Given thé momehtum.distribution"f(uj; the veiocitf distribution éan be found
from the relationship dn = f(u)du.= f{v)dﬁ whe?é.én_is.the'electrqn-density’.

between v ~'dv/2 and v +dv/2. In this manner we find f(v) ='y3(v)”and thus o

o nb. 3 _ s : _ T o
a o B d : _ _ .
an Shu Yo{v) V. . : o S S (17)
where we have used £(u) = n /24w (Recall that u=p/m=yv).We assume that the.
density of electrons losing a good fraction of their laboratory frame energy
to the wave is given by
o3

S T Y A ae

- Thisg is a reasonable assumption since most of the ernergy lost by an electron

occurs before its Velocity drops_below the phase'velocity of the wave {(see

Pig. 6). Initially, ub >> 1 and the momentum spread can be appiokimated by

Au = Yo Avo. Expression (18) can then be rewritten in the form
Snb /nb S (YW/YO)3 AV/ZAVO. In the nonre;ativistic11imit'5nb/nb + 1 and
w o Yy requiring Av/2Av0 = 1 {(see Fig. 5b). We expect AV/ZAvb to be oﬁly

weakly dependent on S so that we may approximate it by unity in what'follows20

Thus, we finally obtain
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It now remains to détermine the laboratory frame kinetic energy lost -

by one electron after one half revolution in phase space. Referring to

Fig. 2¢, the laboratory -frame energy in rest masé units of an electron at
int Q. is y. = y +AB B d at point O i = 1-A8_ ¢ -
_POl?t.Ql SRR 7¥w(l Bby and a point Q, 48 ¥, = VYo (1-0B B Where_

. L . e g 2"'% w0 -
-ABW = Avw/c is given by (}6), Y.= {l~(ABW) ) , and BW = m/koc. 'The?eforé,

_ _ _ S 2 2 C
the kinetie energy lqst is AK.E. t(yl—yzlmc :2YYWABWBWmc . At this point

we want to bbtain AK.E. dnly'in térms of_s and thus use the relationship
. _ N N s . . .
2YABWBW < S{1L+8) 2 {see Appendix C) to obtain
'2 ’ -1 : o : . )
AK.E: = Y me S (L+8) . o : - o (20)

Combining (15), (19), and (20), and recalling that-fdughly one half of the
energy lost by the beam electrons goes inte the electric‘field eﬁergy of £he
wave (the other half goes into the organized motion of the plasma) we obtain
the finai result

5/2

W= 0.55(1+8) for all S. _  o i “_' c ) {21j-

As the electrons continue to rotate in phase space they start tO-regain

their'laboratory frame ensergy and. the wave amplitude decreases. Thus as the

.'électrons'rotate, alternately losing and gainihg their eneﬁgy, the field.

amplitude will oscillate about some mean value. Since the oscillation in wave

amplitude is being controlied by the electrons near the bottom of the potential .-

well, we expect the periocd of éécilla*ion to be T = 2w/ {ek 2 / 3 i% g
roTE T 2 , ' - ose 7! o ¢/ My U

The time evolution of the electric field energy is sketched in Fig. 3.
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buring the trapping procegs the beam electrons are rotated. from a state

‘of constant velocity to a state of essentially constant poéition, and the bean

charge density becdomes rich in spatiai harmdnic'content, It was shown in the
work of O'Neil et al™ that this spatial bunching leads to a power law depen-
dence for the energy spectrum of the spatial harmonics of the form Ek‘ 1' 2 =
. . L K=IuC
2 -2.5 - o o ' o,
| n 7 .. In the relativistic regime we expect the degres of spatial .

|7
' Q

'bunching to be reduced as a result of the increased spread in rotational

' fré@uenciés, and a correspondingly faster decay in thetharmohic spectrum.

B} Gscillating Two-Stream Instability'éna Anomaloﬁé Heating Following Wafe
Saturation. | |
A;Etear.saturation' the iarﬁe amplitgde.wévés produced during.ﬁhe.two¥
stream instébility can be coﬁsidered as equ;#alént to external driver waves

which are capable of producing parametric instabilities in the plasma. :Sinéé

the large amplitude wave frequency is just below the plasma frequency we expect

the oscillating two-stream instability to bé.excitele’zg

. Also the large

) o . . i N ; D a3 R
amplitude wave is subject .to the trapped particle instability 3 d4.'.However, o

" the magnitﬁde-of the growth rate for-the,tfapped particle iﬁstability-is typically=j

less than the trapping frequency. 3In our -case, the trapping_frequency is

: 2 3 0% ; - s : o
approximately (eko ¢M/YW m) = and is small due to relativistic effects. Thus
the oscillating two-stream instability is éxpegted_to be the dominant instability.

The oscillating two-stream instability produces purely growing ion.

Tfluctuations and electron waves traveling parallel and antiparallel- to the

direction of propagation of the driver wave. The instability is the result
of the electrons being driven to and fro across the ions. For a large

T3

e . 22 . ' '
amplitude wave of the form B, sin wot, Sanmartin finds the growth rate to be
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-

6/@85? ((A 4+ B ) - A) o {22)
when the growth rate is much larger ‘than the.ion?electroh'collision'time. In
, . o2 22 o N NPT

the above expression A=0.125(wp —mo Yoo u(l - 2x . Jo(x)Jl(x})? 0 and - -
o 2 L2 2. =2 2 s

= — o] - T & > = / =
B qu {(x) (wp .wo g—4ux { o {(x)) >0 where u.. m/ZMi ’ mp

2 2. 2

me + 3k ve L, X = eEO/mone } and Jh ig the Bessel function df-the=firét'kind.“:g

___-The electron_waves'producéd as é result of*éséillating twﬁ;sfréaﬁ_'
instability have muﬁh lower phaée'vélocities théA.the érivér_wave} This éan'
be seen from- the enérgy and'QOentﬁm.conservation ccndifioﬁs for the Waves. 
ﬁeﬁoting thé diivér; electron, and ion Waves-byi(wé, kb).' (wé; ke),'ané_
(w-,k-) the above conditions are w_ = w, + w - and k. =k, + k. In.the ébove'

e T _ - o i e o} i et

analysis k =z 0O and w, 0, thus v~ w_and k. + X, ~ 0 from which the phase -
_ o i e o e i : T

' L PR s P I S '
velocity of the electron waves satisfy Vp = & wo/lkei-and [v I << w k.
: : s B ©- .0

Therefore, the driver wave can transfer its energy to. lower phase velocity -

‘waves which are then, in turn, Landau damped by the plaswa,. This anomalous

heating produces heavily popuiatéd,'energétic tails on the electron distri-

bution and to a lesser extent on the ion distribution, while the driver

25,26 .

wave decays to a much lower level
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TV, | NUMERICAL RESULTS. .

In this section we summarize the results of a series of one—dimensionél
computer simulations of the collisionless, relativistic beam-plasma inter— -

.27 : ; '
action . " The simuiations were performed using an electrostatic particle -

28 -

. code” T : this essentially amounts to following:the motion . of a ilarge number

of electrons and ions'in'their;self~consistent electric field. In this.casey L

the eLectrlc field 15 calculated from ahe monopole ‘and dlpole contrlbutlons

, 2 . :
of 1he charge density u51ng peflodlc boundary con&nt*ons ?. Thejelectrons

were treated relativistically, but the ions were treated noﬂrelétivistically

since the minimum ion to electron mass ratio wasg five hundred. Initial

electron and ion velocity distributions were maxwellians with zero drift .

velocities,_whereas fhe bean was'chosen-fo be mbnognéfgétic. _Tbé.éyétem
lengths were'slth and ;024AD whe#e‘lb.ié thé Debye lenﬁth corxespondiﬁg.
to the initial elecfron temperaturé; The.electron'té ion temperature ratio
was_taken_ﬁo be 25 in all the runs, and tﬁe fime step was 6.20Qe_;, In

Table 1 the eleven numerical experiments are sunmarized.

We are interested in determining the amount Of heating which' can be

" expected from the direct two-stream interactibn. In thls study, the average

kinetic energy. of the electron and ion dlstrlbutlons is adopted as a_:

measure of the heating. It is found that the energy transfer to the plasma

'dccurs in'basically three stages with the heating raté'decreasing from stageJ

to stdge. In thE'firsf gtage, which oééuré during the two;streém ingtability, -

adiabétic_ﬁeating of the plasma iakes place. 'During.£he seéond stége,.the.
electric field eneﬁgy o? the large aﬁoli;ude waves is convefted into.élasma

kinetic enefgy as a result of parametrlc instébility. By this time, fhe-'

beam distribution has evolved intc a gentle bump, and fesonantrheating takes




inte account
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place dﬁring fhg.third staée.

in Fig. 7 thé gréw;h.iéte‘as,a;fﬁnétiqﬁ of.ﬁévé ndmbér is plottéé %O£.
run number four,.(R4}. (The notation to @e;use& is_;s_fél;ows:_ (ﬁn) wheré-n
refers to the run number given in Table ;.).In Fiéﬁ.?} tﬁé éashed ling ié'
the numerical solution of Eq. (8)} and-the.éoiid line is tﬁe nﬁméridal'{
solution of Eg. (8) with the finite-size of thé-simulation parﬁicles taken f”'
30;31; Note the dégrease in.growth.raté at.higheﬁ Qaﬁe”ﬂumbéfs_
due tta_-finite4siéeé partiéles.r In Table l,.coiﬁmns,Q and 10 givé
themaxiﬁum grdwth rates obtaihed.from the-dispersioﬁ felatidn..a¥rd'
from the simulation experimenﬁs. The agr e ement with linear theﬁry is:
gehérally goéd. The consistenﬁly_lower qfthﬁ rates 6btained from the
siﬁuiation expeiiments are the result of finifé—sized partiéleé and tﬁé:

-

discrete wave number spectrum used in the simulation. (the growth rates in

' . o - ; : ' 2
- parenthesis have taken these factors into account). 1iIn Fig. 8,_]E ]%ﬂﬁnnbyonw

k- "
2 2 . _ ‘ O _ _

- T.=0. 5mv , T,=0,5M,v, r and <v> are given as a function of time for .
& e,r.m.s. i i i, r.m.s. e _ - : _
(R4y . Hexe <> and Vo 2LE the average and roolt mean square velocity. After

w £t = 50, the amplitude of the wave_With the fastest growth rate is such that.

=

it is dominating the plasma electron and ion dynamics, and thus T, T, , and
: . L o i
2 N » ' A : .
<v> grow at the same rate as the wave. The increase 1n-Te and T, is, of
a : : : - : i
course, adiabatic at this stage. The increase in <v2 is due to an average
electric field resuiting from a growing wave.
. ; |2 - Z : o o
In Fig. 9, the mode energy (|Emi /Mhmbyomc_} shortly before wave
gsaturation 1s plotted as a function of mode number (m=IL /A ) for (R7). . Here
: o : m’

Am is the wavelength corresponding tc mode (m)and I is the system length.

~ The spatial harmonic structure is clearly present with the field energy in a -




givén:hafﬁoﬁic dec#ga;ing as the ﬁarmonic_number_iﬁéreaseé} indicatiné'é
poééible power iaw depen&encé."in Fig..lO,,ﬁhé.hafﬁdnic-fiéld éﬁéréy';
([Enlz/léwnbyomcz) is plotted as a-functioh éf_the harmonic ﬁumber (ﬁ).-
féf'(R4), (RT), énd (RLl). A power law depenéencé;e#iéts and the__'

exponent ranges ffom_é.s'to 5;25 cbmpared'to_z.S_fbr'thé nonfeléﬁivistic
VcaééBQQ

| Thé maximum electric fie1d‘energy-at_thé.ﬁime éf:séfuration of_fﬂé.hYdfo—

'ayhamic two—stréam instability is pléttéd as. a function.of-s.ig'Eig.-ll.  Fof

s % ¢.6, W_=.b.158 Szwhich.is thé.dashed'liné in Fig;.ll.and.is'in égreement:.

' e . , ‘ 10 - - : .
with the quasilinear result of Fainberg et al” . Note that the result of

3

Kﬁvtun et éll is also in'faiﬁ agreement with tﬁe data; hdwever;.in View.of
the discussioﬁ inlSec. IIi, we.remain.skeptiCal ofﬂﬁﬁat aﬁalysié._.Thé_“
qualitative yesult proposed in fhis.papgr, Eq;-(4); which is_tﬁa_dark.line
.in,Fig; 11, is slightly high for ail S; but, it'déscfibeS'Ehe observea-'
data, iﬁciuding the maximum at'S ~ 0.6 quitefweli. We also note thét for
S < 0.6, léss than 75% of the electrié field'énérgy is in the wave with maxiﬁﬁm
linéar_growth rate, whereés for 8 > 0.6 é?er 0% df the electric field enérgy
is in the dominant wavé'(sée.éolumn 12 in.Table:l}; This, for s'<_0.6,'the-v
_ single'wave model is breaking down since.one ﬁave"is nof totaily dominant.
in Fig. 12,-tﬁe momentum diétribution shoftij aftér'ﬁhe time ofIWéﬁe satﬁrétion-
is plottedifor (Rll);_ﬁhere p; is thg initial m@men#umf. This_is-ic'be compéreé
-'with the momentum distribution sketched in Fig. 5a.

~To this point we havé.taCitly assumed the electron trabpiﬁg wa§:tﬁe'f-
.sole mechanism in £he singie Qave mddel of the interac£ion responsib1é for' 

limiting the wave amplitude. However, in some parameter regimes, the wave




will saturate. In the nonrelatiﬁistiC'regime
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amplitude has become so large-that it can effectively.acceleraté'én
‘appreciable number of plasma electrons.  When the net energy loss to the

wave as a result of this acceleration exceeds the'energy_gain, the wave

17;33;it was.féund that fhe
électxdn vélccity disﬁribution wéu;d'mergg with the plasma elgctron
distribution during thé_two—Stream instaﬁiiity if_wbz/@ez 2:0;03§; In

fig. 11, the 'obssrved energy transferrfér:{Ré) lies_well below-thé'eﬁﬁécted.

value when compared With the rest of the data. . In this case,'the_additibnal e

damping produced by the wave éccelerating plasma electrons has lowered the

saturation level of the wave. 1In Figs;_l3a,13b;l4a,:and 14b, segmenfs of
phase space hear the time of wave saturation are shown for (R2), (R4}, (R7),

and (Rll), In cases @RQ)and.(RA) significant electrdn acceleration is clearly -

present. For these two cases, W /we. is 0.05 and 0.0315 respectively where

mE2,£'4We2nb/yW3m is an effective beam fregquency. Note that (R2) is one of

the nonrelativistic check runs in which'the maximum electric fiel d
ér1ezfgy is significantly less than predicted, 0.223 compared to .405. “In

contrast; for cases. (R7) and (Rll),'Figs._i4a and léb; sz/wez is 0.0322 x 10—2

and 0.049 x 10_2.'In'view of the above data,-wEZ/meg.> 0.038 appeérs'to give

a rough rule of thumb for pradicting when background electron acceleration can . .

- significantly effect the saturation level of the wave'spéctrum,

Aftef saturation the amplitude of the wave spect;um oscillaies.aboﬁﬁ a..
mearn valqe. Iﬁ'Fig. 15, the observéd oséillatiﬁn.frequenciés are compared
to the o$cillaﬁion ffequenqy associated With.the'bottom of the potential well
of the ddminant wave,

2 30h i -
o = (eko ¢M /YW m) . The ¢urve in Fig. 15 repres§nts

a plot of mTYW‘/we against n = e¢ko/ywmc - Except for case (R4}, the agreement




ig within 15% indicating that the electrons near thé:boftom of the potential

well are responsible for the oscillations in the wave amplitude.
During this time we observe an increase in the lon density fluctuations

{see Figﬂ 16}, and after,at most, two wave energy oscillation periocds, the

wave spectrum begins to decay. In Fig. 17, electron and ion phase space are - .

shown at -the beginming of the wave spectrum decay for (R7). The electrons -

are being'acéelerated out of both sides of the diStribution and 1arge'ion

Cfluctuations are present. In Fig. 18, the cbserved growth rates of”icn

fluctuations are compared Qith the theoréti;al growth rates fo#;thé
os&illating two~$tream instability obtained frbm Eé..(225,' The mégnitudé
of the growth rates are in fair agréement except.at higﬁér wave huﬁbefs. 
However, since‘all the waves havé basicaliy the saﬁé fréguency,‘the Lén&au:
damping of a paiticulﬁr wave will increase with largey wave nﬁmbérs. _Thﬁs,
we feel the sharp decrease in growth'raté for higher wave numbers.is'dué to

.. 34 . g
Landau damping . . Indeed, we find the lower phase velocity waves lie in - the -

tail of the electron distribution. In light of the above eVidehce, the

Joscillating two~stream instability appears to be the dominant decay mechanism
g br ¥

for the high phase velocity waves produced during the t wo - stream
ingstability.

In Fig. 19, the electron distribution function for (RS)'is shown.aﬁ

wvaricus times. Time wet » 180 corresponds to the end of the first stage of

the interaction. The number of electrons in the tail of the distribution has

been increased because of a net acceleration due to the growing wave. Thisg

velocity spread occurs only in the direction of ‘beam propagation. Time

met =600 marks the end of the second stage with the tail of the distribution
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having beén heavily populated due to anomalous heating.. In contrast to.

'.the earlier phase mét<180} thié increése in wvelocity dccurs in both directions.
. In Fig. 20, the total electric field énergy corregpbnding"to the above case
. is plotted as a function of met; The first and second stages are indicated

“along with the oscillation period of the amplitude oscillations. At the :

beginniﬁg-of the third stage the plasma and bean électron'distribution-

corresponds to a bump on the tail situation as shown in Fig.. 21 and resonant -

"heating begins.

In Fig. 22 the average electroh_kinetic-energylin units of kev is given
as a function of wet for (R9) and (R11l). The average ion kinetid-ehe:gy'“

iﬁcrease for (RY) and. {R1l) over the same period of time as in Fig. 22 was

“only . in the order of a few electron volts. Thus,'essentially,ali the energy

lost by the beam has gone into the electrons and the ions merely provide an

.efficient coupling for energy transfer from high phase velocity waves to -

lower phaée.velocity waves via the oscillating two-stream instability. In-

order to estimate the partitioning of the enhergy between the bulk of the

electrons, which remain nonrelativistic, and the relativistic tails, we'plotf

05my” S_»in. units of kev for (R8), (R9), (R10), and (RLL) in Fig. 23. “on -
comparing Fig. 22 and Fig..23{-we Qbsérve that élfhough_the nﬁmber of eledtroﬁs -
ih the relativistié ﬁails df.the distribﬁtion,is_sﬁbstantially smallef than N
thé nonﬁelagivisticxportion of tﬁe distribution,-ﬁheir eﬁergy content.fep£e~:

sents a large fraction of the total energy.




_26;

ACKNOWLEDGMENTS -
" One of us (L.E.T.).Wishes'to thank Dr..R;-Shanny_and Dr. T;.Coffey

of the Plasmé_Physics-Division at the Naval Research Laboratory, Washingtbn;-

D. C., for a summer position and the use of the computer facilities to

perform the numerigal_expeximent[ We acknowledge helpful'discuSsions with
Dr. R. Lovelace and Dr. S. Kainer.

This work is supported by the Office of Naval Research, Contract No;'

-N00014—67—A—0077—0025, and in part by the Atomic Energy Commission, Contract

No. A7(11-1)3170-MOD-3.




o

5

4y

5)

6}'

7)

8)

2)

10)

11}

12)

~27-

‘References
N;.C; Chriétofilos;.Proc; of,the‘2na U;.ﬁ. iﬁtQConf;.oﬁ.Peaceful..
Uses of Atoﬁic Eneﬁgy,VEEJ 27§ {1959)1' |
M.'Friédmaniand A. F,'Kuckés, Bull;'Aﬁ.-éhyé;fSoq. 14, 1253.(i969).4.

E. Ott and R. N. Sudan, Phys. Fluids 14, 1226 (1971):

Plasma Physics and Cohtrolled'Ndclear Fusion Research I.. (Proc. of.the 4th'

Int. Conf. on_PlaSma Phys. and Controlled Fusion ReS.,"MadisOn,'Wisc;,l97l)

IARA, Vienna (1971) 169.
S. Yoshikawa, "Applications of Relativistic Electron Coils and Heating,"

Princetdn Plasma Physics_Laboratory_Report TM—260, Sept. 1971.

D. A. Hammer and N. Rostoker, Phys. Fluids 13, 1831 (1970) .

When the beam life times are short enough to neglect ion motion,_the'correct

22 2. 2 : ' L
condition is a >>AE (r + Qe /me }‘[:R. Lee and R. N. Sudan, Phys. Fluids

14, 1213 (1971) |.  However, when the ion motion is included for long

' : L . 2 o
beam life times, the correct_condlthn is again a >> AE2 provided
2 2 2 ' 2 2 - N _
2, << 'w, where £, = eB /M.,c and w. = 4we n /M. [:K. R. Chu and .-
i : i i o i -t & i _ o

N. Roétokér, Laboratory of Plasma Studies. Report 85,:Cornell University

(1971) .

R._V. Lovelace and R. N. Sudan, Phys. Rev, Lettersigzj 1256'(1971).

A. A. Ivanov and L. T, Rudékov, Soviet Phys. - JETP 31, 715 (1970} .
Ya. B. Fairnberg, V. D. Shapiro, and V. I. Shevchenko, Soviet Phys. -
JETP 30, 528 (1970).

W. E. Drummond, J. H. Malmberg; T. M. O'Neil, and:J, R. Thompson, Fhys. .

| Fluids 13, 2422 (1970).

S T. M. O'Neil, J. H; Winfrey, and J. H. Malmberg, Phys; Fluids 14, 1204 (1971).




e

15)
16)
17)

18).

19y

20)

21)

22}

23)

24y

25)

26)

28~

R. I. Kovtun and A. a. Rukhadze, Soviet”Phys- - JETP 31, 915'(1970);f
The quoted result was !EM| /8ﬁnbyomc S= 0. 396 S. -However, for an electric”
field of the form E = EM(t) cos kx, the mean energy density'is'|E£ /Jienw

in;tead of |EM12/8ﬁ.

The dispersion relationship was solved without taking iﬁto account

finite-gize particles..'The_results'afe_part of a book of dispersion

relationships being compiled by the aﬁthdrs.j;f

‘Here we are assuming that the growth rate of the instability is much

faster than the voltage change chaxacterisﬁic of the diode. Typically,

. this voltage change is ilO%-over'Smlo nanoseconds.

J. R. Thompson, Phys. Flulds 14,1532 (1971)

I. N. OnlSﬂChOnﬂO, A. R Llnetskll, N. G. Mat51borko, V. D. Shaplro,

"and V. I. Shevchenko, Soviet Phys. - JETP Lettars 533'407 (1870).

This may also be interpreted.as incréased phase mixing due to'relafivistic .
effects. -

The-crit#cal dependence is on w/ko and'vo.sincé only a Slight chaﬁgé.in
these_quantitigé pﬁgduées & lérgé éhange in.yﬁ §nd Yo and thus éﬁ-.

K; Nishikawa, J. Phys. Soc. Japan 24, 916, 1152 (1968)-.

J. R. Sanmartin, Phys. Fluids 13, 1533 (1970).

‘W. L. Kruer, J. M. Dawson, and R. N. Sudarn, Phys. Rev. Letters 23, 838

(1969) .

H. V. Wong, Phys. Fluids 15,632 (1972).

W. L. Kruer and J. M. Dawson, Phys. Rev. Letters 25, 1174 (1970); 15,

446 (1972).

J. Daw sonand C. Oberman, Phys. Fluids 5, 517 (1962); 6, 394 (1964).




=20~

27) L. Thode, R. N Sudan, S Kalner, .and J. Dawson, Bull Am Phys. Soc._"
17 592 (1972)
28) ° J. M. Dawson, C K. Blrdsall A. B. Langdon, and H. Okuda, R L Morse,

Chapters in Methods of Computatlcnal Phy51cs, Vol 9, ed _B. A}der, s

.

Fernbach, and M. Rotenberg (AcademlcmPress, New York, 14850, 1969).

29)_'B..Rosen and W. Kruer,_“Suds_—'A Faster Version of thefDipoleiExpansiont“

Fourth Conference on Numerfcal Simulation of:ﬁiasmas, nroceedings;
Naval Research:Leboratory;'Washington, Dr:C.,,2;3 Novr_1970;_

30)t 1. okuda and C. X. Birdsalr, Phys. Fluids 13"2123 (1970).

_-31) J. M. Dawson, Astrophysics and Space Science 13, 446 (1971).

32) ~ Due to the use of finite-size partlcles the. hlgher harmonlcs decay some~
what faster than they really should be. ..

'335 S. Kainer, J. Dawson, R.'Shenny, and T.'Coffey, Ehysf_Fluidetléj 493}'
(1972); . |

34) Finite-size particles have already been taken into account in Fig. 17.

35) P. F. Byrd and M. D. Frieﬂman, Handbook. of Elliptic Integrals for Engineers

~and Physicists,“SpringerHVerlag (1954)r,

36)u It appears that (B-16) way bea sllghtly optlmlstlc in light of the cal~
culatlons, 1nclud1ng electromagnetlc effects, performed by.H L. Berk,
"Relativistic Beam Plasma Instability in Strong Magnetic Field"; Tawrence
Livermore Laboratory, UCRL-73951 (19?2). However, the twoﬁstream instability :

is relatlvely insensitive’ to the plasma temperature whereas the cyclotron
- mode 1Ls expected to ba reduced if the plasna temperature is taken into -

. account.




30~

APPENDIX A

Tfappinq Frequency of a Relativistic Particle.in ah Anharmoni¢ Potential
Here we compute the oscillation frequency of a particle trapped by an
electrostatic wave with a phase velocity close to tne-speed'of.light. In the -

-laboratory frame the'equation of motion is

dp® : .-.' . - HI . i . . I
a—,lz. :qE-(; sin (k'x'-w't’) - o o L _(A»l) '

'_where the prime denotes a laboratory frame quantity;"Trahsforming to the wave -

frame, Bg. (A+l) becomes

T N @

' The electric field amplitude is the same in both frames. We sblve'Eq. (A2)

subject to the condition that the particle has a maximum kiﬁetic énerg?.'

'(YM - l)mcz.at-x.: Q when t = 0.

For non-relativistic, small amplitude motion in the wave frame it is

easy to see that the particle will oscillate at the bottom of the poﬁentiaim

: . 3 : . o

well with a frequency Wy = (quk/m}z.When transformed to the laboratory frame.
. _ R : - o o

we  have w% = (qEOk'/YW m) * since the wave number transforms as k' =‘ka and

: _ . : . 1 _ _ ' R Ty '

the frequency transforms as wé ='YW wT where YW = (l_“(w‘/k'c)z)' .- Thus, -

in the above limit, the only change from the nonrelativistic'fesﬁlt.is_that;
the particle'has an effective mass of YWBmL
To obtain a more general solution of Fq. (A+2) we multiply by cﬁzdx/dt

to obtain




=L qE/mcz_sin kx - %%— o o S f';_ ._' (A°3f

dt

-

where v = {1 - (¢ "dx/dt)”} ". . Integrating Eg.-(A-3) yields the conservation

of energy condition:
H = ymc + gf(x) . : : : : : S B4y

Here ¢(x) = - ¢o cos kx, H is the total energy, and ¢6 i'Eé/k is the amplitude -

‘of the potential in the wave frame. Using condition {(A°4) and v = Ty at =z =0

we obtain

cos kx.~ L+ &y~ {M? me /q¢o. SR - o _(A-5)
BEquation {(A+3), with the aid of Eq: (A*5), can now be rewritten as

gl -y v -y -] @)

where we have. recalled the definition of the cosine and energy in terms of .

x{t). Here 1 = q¢o/mc 1s the ratio of the potential energy to the particle

-rest.enérgy in the wave frame. Rearranging Eqg.. (A+6) and integrating gives .

Y _ : . : - B :
M SR . —2 : :
Lo+ -0 by -v @n-y, + 0] yay G

T'=

L
ke M

where T is the guarter pericd time., For the last factor in the sguare root

to remain positive we require 2q¢b > (YH - 1} me which is just the condition




Y

: ' R T I
Yoy, = 2m)/dn o B = axc 51n.[ 2y, ]. , Yi.z v
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for the. particle to remain trapped.

The integral in expression (A7) can be'performed___under.the restrictions

> > - 2n > = 1 to give
M z 1 YM . n _ __t Eh

7= (.qszﬁo'/m)—ﬁ [K(hl)l.‘l‘ 'lTT]i (], _ AO(Bl'hl) :l L - (A.S). e B

=
1

n expression (As8), K is the elliptic integral of the first kind, h =.

M-i l, and AO(B,h)-is'Heuman’s:

Lambda Function. The above solution places an upper and lower limit on 5

s 0.5y_ < n < 0.5y,. Ifn>0.57,, then the solution of expression (A°7) can

bhe written és-
v = ek /mieg I ki) + mng) (- A (8,0 ] (B+9)

2

. when v, > 1> - L2y, - 2n-. Here_hg =.ﬁY_/Y+).(2ﬂ_; Y+)/(2n." Y;),'§ -

arc sin [ 2n/(2n - v) J%, and g = (2n ~'Y_)Y'+/4n . For electrons oscillating -
in the potential well of é vave produced by tﬁé t%o~stream.instability we. |

._expect the condition n <70.5Y+ to be éatisfied exce§£ for eléétrons t#appéd  i 
close to the bottom of.the well for which Ty 1 (gee Eq. (19))._ However, %orlﬂ

electrons with y = 1 both (A+8) and (A+9) give the same result Of T % %-(qk2¢0/ o

-1 o - :
m) ~ - Thus we will use expression (A-8) to determine the fregquency. © -

" The total period of the oscillation is 4T.  Consequently, the freguency

‘of the oscillation 1is

W, =3 {gk ¢o/m) (K(hl) + own (L | AO(Blrhl)) - KA 10y
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At this point we note that for a ronrelativistic particle in an anharmonic' ' -

" poteritial, Y+'— 2n = O.S(VM/C)Z ~ 2n. Under these conditions hé-z.hi =
- mv;'/4q¢é, Ao(gl’hi? = 1, and ekpréssion (AblOi reduéé# to
S 2 4 . R oo :
Uy =3 {ek ¢O/m) /K(ho) S DR (& }1}

T

which is the well known solutidn of a particle in-an énharmonic thential;
.'Transforming:(A=lO) and (A-11} to the labocratory framefwerobtain'- 

I_¢_”_.!:,, 121 3%{ ) .|., 2%/ . Y v“l.-
wg =5 (@R S /my Ty Ky b omlags/vme™) AT - A (B b)) |

T _
A - |
(A=12)
and
‘_/
o = T k20 sy 3 k(s ) R (a-13)
r =z ¢ o’ ™y o i : IR _ :

For the purposes of this report we'leave.ko; hi;ﬁl in terms Cf'ﬁhe wave  frame

quantities.
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APPENDIX B~

" Derivation of the Maximum Linear Growth Rates for the

Electron Cyclotron and Two-Stream Intéeractions.
. The general dispersion relationship is

ek, = 1 pkew) + o Ow) + w (kow)

where u , a =i, e, b, are the susceptibilities: The electrostatic approxi- .

' mation vields

o 211 du duy | :
J = Hr VS [J-i‘kff%" My
-0 w—kllv‘|l.— nQU[-l+(uJ—+u” )/C] . - .

Qt

i
SE
N
ey

_ : _ . aﬁa_ ) afu ]_ o : o . ) B
&M) . } : _ aul?/z . ll au{L o o - . : 2 ,

In the above relationship w, is the plasma freguency of species g, O = eB /m o
T , . : : o o Ta

: o 2 2 2 . ,
~1s the cyclotron frequency (Qe = Qb), k ’='kl_ + kll ; and the integration-

o

_ E 2, 2.~
- variable is u = v(l - v /c”) .

We assume mexwellian distributions for the,iOns-ahd-électrons:--

-3/2

. 2
£ = (2mu )
o o

og=1,e

2 2
exp {-u /_2uOt }

Since the ion and electron thermal velocities are small-compared with the

. : . L i
speed of light, the resonance term w-— kl]vll'—_nﬁa[}ﬁ(ul?+ull2}/c%] 7 can be -
approximated by w - kl|v|i - nQa._ Thus, the susceptibilities bécomé-
z _ RN : .
_ ) W n=+-o Lo—nQOé : Y . -
u = 1. e 2 1 "¢ I'(XQ)J (B-2)
2 . X
ux%,e k2v { /2 v k n=-e - Y2k v _ n
| o i N e

- ‘ 2 2, 2 , ' .
“where u, s v, and A T k)'v "/Q 7. When klv /< +20, only the n = 0, +1
: o o o l, o i : A _ - _
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terms need to be retained in the sum. Since vi/c < v /o << 1 we expand the
i ' w-nit

plasma dispersion function, Z(x) = —x“l—d,5xf3..;where'x = — >$ 1)_tO
obtain - ¢
2 2,2
@ W, sin 0@ o o
=l wk cos 29 R i, L (B*3)
i T T TS ' 2 _ 2 ' R TP ;
: . w =0, . e : : AR
: i :
. w‘2  o “sinr S| . e
=28 o5 %o ' (Be4) -
R 5 : 5 > E . o B 2
w © _Qe .. . . N

where cos & = kl!/k.' Limiting the analysis to the high frecduency régime,

w > (wéﬂe) , we neglect the ion contribution. ‘Since the beam will be con~

sidered as a small term, the main part of the dispersion relation is

2 2

, 2
we_- 5 we gin @ \ . . _ o
1 - cos O - ~——————— = 0. ' _ ) (B~5)
-2 _ 2 2 : : _ . ABroy
w w —Qe i

SN T

1 2 ' : . . : " : o
032 = 5 ﬂe (l + wez,/ﬂez) 1 = l _'. 2 = 5 > . (B‘G)
: T 8 (L + w /4 '
. e < 2

T ' 2 . ' '
where we/ge.<< 1. To order {we/ﬂe) , the two roots of (B-&) are:

kA
Hl

2 _ 2 2, 2
2 (L +w /8 sin ©)
e _ e e

and - ' . RN

For the beam, the resonance term in (B°1l) couples the ul-and ull inte-
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cgration.  To simplify the resonance term we make the two mass approximation -

and chooée'
_ 5 . i R 5 | BREPR 2
fb = Sguo | u|i? {(2mu ;b) exp - ( l,/zulgb?

i where u =y v and (1+u 2/(:2);E For = ky\vi ./0. < éO tl '5 0
= : = . v .20, the
- b YO ljb Yo 5 or l.l!b- R = s .ne. eam

susceptibility can be written as

2, 25 L
= L i - B . R ; S (B-8)

H ) i
b : (m—kl-!vo)z - QR_z (m—'kl }VO)Z

S o2 2, 2 2.3
A = Q = w /Y ‘ = °
unerg_QR e/YQ”' wbl_ mb /WO_, and mbli . wb /Yo g

To £ind the_maximum growth rates'we-sét:w'% mi+'5m'Whefe 6w/wi'<< 1 éndrw+

and'mm_are given by (B+7}). Expanding (B-5) about w.=_m+ we'obtain

. .3 ' ) E
' Su aye' : W . W sin 26
L +u = B = 28w e ._2 a : .
e Y cos G + > %
o . . wi mi w : q 2
+ *® e
2 2
o w
= e

Examining (B-8), there are three possible cases which may produce an unstable

root:
.i). w, :'}vo cés @(
ii) ¢£ N kﬁo cos © +:Qe/y0, 
and | |
'ii;) 6, = kv_ cos O - 8_/Y_.

Case (i) = {(Two-Stream)

a) w - kv cosBand w= o + 8w
+ o . T

' ' 3 : R} - cos QO

L , 2+ 80 : =2 bl _ ,

1+ Myt T (ﬂe/we) gin O - 5 =0
e : (Suw)




R

;<:>  ':T}   

S o 'ﬁ'lk? 13 aza L ari
. m/we.f‘{ﬂe/wg) 9+__ v {nbzzfe?]__ (me/Qe?-. cqs o @_S%n_ -91.'

‘o

1 1y3 a3 as : SN

. e 13
..ﬁ/me_— > (me/ﬂe) _- cos

S b)Y o = kv _‘cos O and-w = w_ + Sw

. _ _ 5
Do mbll cos. ©

D _ T Ve b~ w cos @
e : . . e

(6w)2

- R /3
m/we = cos & . 2Yo (nb/Zne). | cos 3]

C
~
e -
li

_— . :

Cage ({ii) (Cyélotronr— Normal Doppler Effect) .-

al w, = kvo cos @ + Qe/yo andjw.=_w+ +-6@

.(Qe/we)'m+ i'i-{nb/ne)}/z_(mé/ﬂei éin ZO

Hi

w/wg 2

Sfug =0 T (B-11)

b) w =z kv cos & + R /Y. and w = » . 8w
o . e o -
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1/2

- N . " : .
@/we cos Q;* > (nb{n@)._ {Qe/me? - SLH‘@ cos '.Q -
Ve ® (312)
' Case (iii) (Cyéldtron ~ Ahomolgus_Doppler-Effeét)-:
a) _mf ? kvo.cos Q0 - Qe/Yo_and.w-f w, 6@ _  :
S ‘- . . . 7 . _ mb_l-__Sln 0 - '
S . 2° 8w 2 S
1+ + oy oz (2 /w) Sin g+ ————— =
e L. ow, e e 50 ¢ Sy o
. _ 5" Bw
fe =9 e ) i /2 o o2
w'we (?e/we) m+zf 2_(nb/ne) (we/ge) sin @
' T 1/2 T L T T R R I
,f;\ | S/we =3 (nb/ne} (me/Qe) sin O_:. L . L (Be13)
_b). w =z kv cos 0= 0 /Y and w = w0 + 6w
- o e lo -
2 2
A gin @
_ L 2080 _ p| Co
LR Tyt s e Y =0
: - N 28 «Sw ' ‘
R
| IR 1 1/2 L 1/20 172
w/we._ cos O + > (nb/ne) _ (me/Qe) .__51n_@ cos - S
e, .1 S 1/2 o2 Celg2l
§/w =5 (n/n) _(me/ﬂe) sin 0 cos 76-- _ (B l%?_.'

TIn order to obtain (2-9) through {B*14) we have assumed that.Q 2/w 2 >> 1.
: o ) S e e -

2

'. s 2 . ) . _.' . ’
" For: sake of argument, we will choose_ﬁe /we z 10 which appears to satisfy the -

approximations used provided Yo is not too large. Under.the above conditions,

('”; the three largest growth rates are:
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L ; IR s R S
ta) 6./@. = e (wb/we)_; at .cos 0 = }- o (s-lp“y

2/ 1/3

X 1 3 1 : 1 SR
R R Lo Q ) (Sl ' . 1
b) §O/we iy .(wb/w ) _(we/ e) atlcos € == - (B-9 )
ro : S Y2
_ - 12k a2 ' 1 U
§ /w = ) : : Scos B = - ST (Be14T
C). —l/ e 2 (9) (wb/me) (me/ﬂe) - et L ey ) i( , ) _
The supexscript % refers to w = w, and_the”éubséript'f& refers to the resonance
“at.n = :} . _wa} in crder_ﬁo approximate the unstable spectrum by a one-
dimensionai-ﬁodel, we require
- ¥
>
a) GOZGO 2 | | -
L . and o - L (B
" > ’ ’ : f i [
. B) 6 /81> 2 S e

Siﬁcé wé_expect the two-stream instéﬁility tb.e—fold épprbximately 7—15 fiﬁes;
this will.iﬁéure that over 95%Zof-the_enérgy iésﬁ-by:the be&am is dﬁe to the

£w0w5tream.inst§bility. 'Substitutiﬁg (Ble'), (B;ll)f'éndsz-léi) intd.(B°155
. | /3 ;.YOS f?om (by .
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: . . . . L 5
y i 2 I and b
we obtgln Qe/we b | rom (a) an Qe/me ~_1.2§_ Y, (nb/2ne).

Therefore, the requirement for a one-dimensional spectrum reduceas to

0, /0 " 210 amd @ e zvs . (Ba16)
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~where BW = Bo(l—O.SYO 1(nb/2nez

' : -1 S
_(l~BOBW) b oand 'y

APPENDIX C

" Proof of Energy.Trather'Relétiohship :

Here we show that .

ayBaeg < s(s) C | G
/3, A S WG ¥ S
 )' ASW _'AVW/C f.o'5$oYo _(nb/zne} '

(1—(ABW)2)HT. Using the expression for'BW,Agﬁ.aﬁd-y

" can be expressed as

SR DS -1 T :
By = 058 T S(NT 0.58) e

..and'

: . o -l : :
Y = {1 % 0.58)(L + § - 0.258270 230 y7E o ee3)

The left hand side of {C+1) can then be_rewritten.és.f
Ly Lo
_ _ o e (1 - 0-5SYO Bo )
2yB. AR = S({1+S)
W W o

— g ) C(cedy
(1= 0.25y ?30 292(1+s) l}“

Now in the limit Yb'?> 1 (i.e. for a given value of nb/ne,fABW:increases as
. ' .2 =2 2 -1 l2/3 -1 : o
Yo increases) 0-25YO‘ BO s (l%S} > O.25(nb/2ne) / {(1+3) 7 << 1 and thus

2

we may expand the'squaré'root for all S since as-y -+ 1, 0.2SY§f 80_252(1+S}—l+ 0.

Therefore,

_ _ e . o Sy |
B BB m S(148) F 1 - e S - 0.255% (1+5) "¢ - {Ce5)
Ry R _ 2, 2 _ _ _
' _ Yo P '
' 2 =1L
where s - 0.258 (l+5) > 0 for 8 > O.
In the limit Y§ >>'8 »> 1
26 05 > s 10 2375 oo 3T L ciie ™R (e
TRy 2%y | o , b Te J = S48 & (&-6)

and in the limit (e 1




|

.;4]_;

_ZYBWfABW f S(1+8) [l - 0-5(?b/%ne) { ] < $(1+S)_ (Q'7)f

'Consequently,_'

2YAB B < 5(148) 7 for ail - (ce8)

The exact relationship 2yBW ABW was compared to S(l+s)‘2 fOf-nb/“e = 1/9

and Yo = l_fo_y"= 16. The maximum erxbx (for nb/hé <'l/9 the error is smaller)

o

was found to be 6% in the range S = 0.3 to § = 0.6.




Table 1:

Figure 1:

_Figure 2a:
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TABLE and FIGURE CAPTTIONS -

Summary of the eleven computer simuldtions'performed."ColumnS-(l)~:

(7) give ‘the basic parameters for each’ run. The system length is
denoted by L, and the number of simulation particles used are Ne-
a3 -3, S -3 5
(electrons.10 7)), Ni(lons-lo Y, and Nb(beam_eleqtronSflO }. .The
initial'plasma”electron-témpératuren(T )'is_given in dolﬁmn (8) in .
units of kevL "Colunns (9) and {10) are the max1mum theoretlcal

growth rates (G /m = 0.86676 (nb/2né) 1/3

7Y and the maximum growth
rates from the 51mulatlons.. The maximum grdwth rates obtained from
the numerical solution of Eq. (8), corrected for finite-size
particles, are given in parentheses, The ' strength parametei
(S = 2 ('./2ﬁ )173) is given in blumn.(il)S In é i .(12)
5.2 By Yo n /2, s g c - (11). In column
the percentage of total electric field energy in the dominant
mode is given. The maximum fraction of initial beam energy . con=~
verted into electric field energy as a result of'the hydrodynamic
two~stream instability (W = Z|E I /8nnby nc ) is glven 1n column
Kl3f For the nonrelat1v1st1c runs {Rl) and (R2), W = Z[E [ /4wnbmv
N is the number of tlmes the two~ stream 1nstablllty e folded and

= 10—2m 2'/. 2 . 10“ / is the effecti b to- 1 ]
R = - w, = n, YW n, a effective eam o p.asma
frequency ratio. These are given in columns (L4) and'(lS).- Finally,
the fraction of_kiﬁetic energy lost by the beam after the comple-
tion bf the second stage (K) is given in column (16).

2 and growth rate..

Numerical solution of Eg. (8) for the freguency w
Gk as a function of wave number when Yo = 4 and pb/ne = O;Ql.

Laboratory frame sketch of phase space at tiﬁé t = to, Initially
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Figure

Figure

Figure

" Figure-

Figure

- Figure

Figure

Figure

2bz

43—

the beam electrons move over a srngle wave with: relatlve ve1001ty
- _ 1/3

Avw/c = 0. 5Y (nb/Zn

the separatrix of a fixed potentlal ¢(to).--The_initial'beam

t. i and = my_w/k .
momentum is p_ Py :mYWr/ o

Laboratory frame sketch of phase space'at time t = ti.' Trapping_

.beglns when the seoaratrlx passes *hrough tho actual bean tra-

. jectory. . The shaded.line segmant represents'trapped'beam glectrons.

Zo:

Laboratory frame sketch ofrphase_spaoe at'time.t =_t2.‘-Wave-

saturation occurs when the beam electrons trapped at t = tl have

- rotated one-half" revolutlon irn phase space {i.e. from p01nt Ql to

point QZ). The intermediate dashed llnes represent the orbits

ba:

5b:

“trapped electrons, electrons trapped'between t =t and t = t

1 ' 20
would have if the potential was fixed at ¢(t2);

sketch of the logarithm of the electric field energy in the

dominant mode (QnIE ] /16m). as a function of time.
o

¢ The separatrix in the wave frame is plotted for.various values of

Av /c. As'Av /c increases the eeoaratrix becomes more peaked

Only the p051t1ve segment (p/mc > 0) of the separatrlx is plotted
The momentum dlstrlbutlon assumed in the determlnatlon of énb .

The velocity interva}e about_m/k and vo assumed in the determination

of énb . Recall that AV/ZQvo-was taken to be unity.

Laboratory frame orbits an electron would follow if it moved according

2 - P
to (y-Lymc™ + e¢o cos kx = B ' in the wave frame. In this case,

ed /mc_ = 0.50, y, = 4.0, and H is given for each orbit.

Ooserved growth rates as a functlon of wave number for (R4Y) compared o

(l - wv /k c ) l_p The-solid line represents L
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to the numerical solution of'Eq;-(a), with {solid line) and'without

(dashed line) the finite-size of the simulation particles taken into
Caccount.

2. : '2'EM v 2

. : o T
r T, LV, ; and <v>
2 _eD r.m.s. 1 231 d,r.m.s., e

for (R4) plotted as a function 6f time. “Here we are only interested

in-showing that the above guantities all grow_at the same rate and.

““thus the verticdal axis is not specifically scaled.

: :IEml%qﬁﬁnbYomcz Qlotted'as a function of the*mode number - (m})

for (R7) shortly before the time of saturatibﬁ of the fundamental
mode (m = 14}. In this case the wave length of mode m is given'by

Am = 85,5hE/m with kl4 =:6.10AE.:

.. . N 2 - to. 2 " B ) .
10: Harmonic electric Ffield energy {]Enl /l6ﬂnby0mc )} plotted as a

function of the spatialﬂharmonig'number (h) fdr (R?}, (R4Y, and
' ' M2 @
n .

o
ey

(R11). The power law dependence is of the'form. Ek I

A e=nk
0 3

11: The maximum fraction of initial beam energy converted into electric

- field ‘enexrgy during the hydrddynamiCjtwo~stream instability

lil

. 9 . . B} T S
(W 'Z]Ekl2/8wnbyomc ) as a functiecn of the strength parameter
kOE o o _

/3

114

. 5 1 o o _ . -
(s 'Bo Yd(nb/zne) Y. The da;hed line is Eq,_(l)‘and.the.solld

1line is Eq. (4).

Figure 12: Momentum distribution of the beam electrons for (RI1) shortliy after

wave saturation. -The group of electrons with p/mc = 3.0 to 3.4
correspond to electrons trapped at t = t1 in Fig; 2b. The dig- .

tribution . is normélized to unity'ffbdp = 1.

Figure 13a: Segment of phase space near the time of wave saturation for (Rz);

This is a nonrelativistic check run in which electron acceleration




" Figure

Figure

Figure

Figure
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~is quite evident with W, /we =" 0.05. The system length is I, =

-3.42Ag, In Figs. 13a,b and 14a,b the beam_eleétroné'are:represented

by the circles and the plasma electrons by the dots.

13b: Segment of phase space near the time of wave saturation for

o 5 ._ ‘ S B
. {R4). 1In this case mE_/we = 0.0315. - The system length is L = -

7§.2AE;

J4a: Segment. of phase space:néar the time of Wavéfsaturation;for'(R7);z

- Here wEZ/we2 = 0.0322 :»c‘Il."i)"_'2 << 0.038 and electron acéeleration :

“doas not appear to have significantly affected the level of wave

" saturation. The system length is L ;_SS.SAE '

-

14b: Segment of phase spaces near the time of wave saturation for (R11). .

2 ' -2 ' :
Here sz/we = 0.049 x 10 << 0.038 and the system lergth is L =

44.OAE.

15: Comparison of the oscillation freguencies in ane'amplitude and

the trappihg frequency associated with the bottom of the potential

. : : 2 . . N . . . A .
well. .Here 7 = e¢M/Ywmc is the ratio of potential energy to

electiron rest energy in the wave frame, ¢M ig the laboratory frame

: ' o . 20 1/2°
potential, and the curve is Yw wT/we =7 / .

- 2, 2 e 2 2
lFlgure Jé: Ln IEkO[/Qﬁﬁnbyomc and ion den51ty ?lugtuatlons E[nk] /]nol are

plotted as a function of time for (R?7). The increase in ion density

fluctuations is coincident with the begiﬁning of wave decay.

Figure 17: Segments of electron and ion phase space for (R7) at wet = 900;

' Electrons are being accelerated out of both sides of the distribution

and large ion fluctuations are present.

Figure 18: Ion fluctuation growth rates as a function of wave ﬁumber for (R9).
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' The curve is the osc1llat1ng two stream grow&h late as a functlon :

Figure 19:

20:

of wave number predlcted by Eq. (22) w1th x = 2;O,Iu = l/2000rand~

w = 0.95%
o} e

Time evolution of the electron velbcity diStributien for (®8).

Time 0 t = 180 is the end of the first stage, Time o t = 600

is the end. of the secon& stage durlng whlch anomalous heatlng
produces a heavily populated, energetic tail on both sides of the
distribution.

Total electric field energy ( EIEKI /SHnbyomc2) as a function of

' time for (R8). The stages of heating are indicated as well as the

- period of oscillation in wave emplitude. In this run 24% of the

21:

22:

23:

electric field energy was in the dominant mode at'wet.i 180.
Typical combined plasma and beam electron velocity &istribution at
the beginning of the third stage. The distribution also has a

large negative tail which is not shown. The distributions are

normalized to ffe(v)dv = 1 and ffb(v}dv ='nb/ne. .The run is {(R8).

The average electron kinetic energy is given as a function of time.
Heee(:)and(:)denote the end of the first and secopd stages.
The energy correspondlng to the average root mean square velocity

2 s
(O.va . -} in units of kev_ls g;ven as a function of time. The

- »nda

magnitude of the energy is substantially lower than in Fig. 22.

4

Time weL = 0 indicatesthe beginning of the'ihetability and- not

necessarily the run.
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